Pixel ToT precision study

Fuyue Wang

How the number of ToT bit influence the reconstruction ability? $50 \times 250 \text{ um}^2$

- 1 particle case
 - Randomly shot in the middle pixel (uniform distribution)
 - May diffuse into nearby pixels
- 2 particles case
 - 1st particle randomly in the middle pixel
 - 2nd particle has a fixed distance (d) to the 1st

 \blacksquare X residual ($X_{det} - X_{true}$)

- $Pixel_X = 50 um$
- Charge weighted average ----- ave
- Artificial neutral network regression ----- mlp

■ Y residual (Y_{det} - Y_{true})

 $Pixel_Y = 250 um$

- Charge weighted average
- Artificial neutral network regression

 Generate dataset with 1 and 2 particle events and classify them with neutral network

- Given a constant True Positive (95%), cut is chosen
- Calculate the False Positive and compare

- 2 particles are hit in two nearby pixels (Uniformly distributed in each pixel)
- 2 particles diffuse independently

before diffuse after diffuse

- Bit = 2, 4, 6, 8, 10
- Distance = 25 um

after diffuse

■ False Positive at distance 15, 25, 35, 50 um.

Next step ...

■ Learn and test more with artificial neutral networks

Regression of the exact position

More particles conditions

Thank you!